Instability Analysis of Terrain-Induced Canopy Flows
نویسنده
چکیده
Tall vegetation and complex terrain create difficult conditions for measuring and modeling net ecosystem– atmosphere exchanges of carbon, water vapor, and pollutants. The instability of canopy flow regimes over complex terrain is critical for understanding what factors are essential to control exchanges between different canopy flow regimes. In this paper, an analytical criterion of instability of the terrain-induced canopy flows is derived from the simplified thermal-hydromechanical equations by nonlinear instability analysis. The stability of the terrain-induced canopy flows and an oscillation solution are predicted based on the instability criterion. It is found that the critical values of control parameters are determined by the terrain slope, drag coefficient, and leaf area density of vegetation.
منابع مشابه
Stably stratified canopy flow in complex terrain
Stably stratified canopy flow in complex terrain has been considered a difficult condition for measuring net ecosystem–atmosphere exchanges of carbon, water vapor, and energy. A long-standing advection error in eddy-flux measurements is caused by stably stratified canopy flow. Such a condition with strong thermal gradient and less turbulent air is also difficult for modeling. To understand the ...
متن کاملOptimal control of katabatic flows within canopies
What slope angle favours the development of katabatic flow is still an open question. Some studies have clarified that katabatic winds are stronger on steep slopes, while others have demonstrated that katabatic winds are stronger on gentle slopes. Here, we explore the control mechanisms of katabatic flow using a simplified theoretical model in an attempt to clarify the causes of the paradoxical...
متن کاملModeling and measuring the nocturnal drainage flow in a high-elevation, subalpine forest with complex terrain
[1] The nocturnal drainage flow of air causes significant uncertainty in ecosystem CO2, H2O, and energy budgets determined with the eddy covariance measurement approach. In this study, we examined the magnitude, nature, and dynamics of the nocturnal drainage flow in a subalpine forest ecosystem with complex terrain. We used an experimental approach involving four towers, each with vertical prof...
متن کاملAirflows and turbulent flux measurements in mountainous terrain Part 1. Canopy and local effects
We have studied the effects of local topography and canopy structure on turbulent flux measurements at a site located in mountainous terrain within a subalpine, coniferous forest. Our primary aim was to determine whether the complex terrain of the site affects the accuracy of eddy flux measurements from a practical perspective. We observed displacement heights, roughness lengths, spectral peaks...
متن کاملCanopy Height Estimation in French Guiana with LiDAR ICESat/GLAS Data Using Principal Component Analysis and Random Forest Regressions
Estimating forest canopy height from large-footprint satellite LiDAR waveforms is challenging given the complex interaction between LiDAR waveforms, terrain, and vegetation, especially in dense tropical and equatorial forests. In this study, canopy height in French Guiana was estimated using multiple linear regression models and the Random Forest technique (RF). This analysis was either based o...
متن کامل